Differential Transcriptional Regulation in Roots of Tomato Near-Isogenic Lines in Response to Rapid-Onset Water Stress
نویسندگان
چکیده
Cultivated tomato (Solanum lycopersicum L.) is susceptible to abiotic stresses, including drought and chilling stress, while its wild relative (Solanum habrochaites) exhibits tolerance to many abiotic stresses. Chilling roots to 6°C induces rapid-onset water stress by impeding water movement from roots to shoots. Wild S. habrochaites responds to root chilling by closing stomata and maintaining shoot turgor, while cultivated tomato fails to close stomata and wilts. This phenotypic response (shoot turgor maintenance under root chilling) is controlled by a major QTL stm9 on chromosome 9 from S. habrochaites that was previously high-resolution mapped to a 0.32 cM region, but its effects on transcriptional regulation were unknown. Here we used paired near isogenic lines (NILs) differing only for the presence or absence of the S. habrochaites introgression containing stm9 in an otherwise S. lycopersicum background to investigate global transcriptional regulation in response to rapid-onset water stress induced by root chilling. NIL175 contains the S. habrochaites introgression and exhibits tolerance to root chilling stress, while NIL163 does not contain the introgression and is susceptible. RNA from roots of the two NILs was obtained at five time points during exposure to root chilling and mRNA-Seq performed. Differential expression analysis and hierarchical clustering of transcript levels were used to determine patterns of and changes in mRNA levels. Our results show that the transcriptional response of roots exposed to chilling stress is complex, with both overlapping and unique responses in tolerant and susceptible lines. In general, susceptible NIL 163 had a more complex transcriptional response to root chilling, while NIL175 exhibited a more targeted response to the imposed stress. Our evidence suggests that both the tolerant and susceptible NILs may be primed for response to root-chilling, with many of these response genes located on chromosome 9. Furthermore, serine/threonine kinase activity likely has an important role in the root chilling response of tolerant NIL175.
منابع مشابه
Regulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice
Drought stress is one of the most determinative factors of agriculture and plays a major role in limiting crop productivity. This limitation is going to rising through climate changes. However, plants have their own defense systems to moderate the adverse effects of climatic conditions. MicroRNA-mediated post-transcriptional gene regulation is one of these defense mechanisms. The root endophyti...
متن کاملPhysiological and biochemical response of tomato (Lycopersicon esculentum cv. Rio Grande) to foliar application of biostimulant under water deficit stress
In order to study the effect of physiological and biochemical responses of tomato cv. Rio Grande to foliar spray of Megafol under water deficit stress, an experiment was carried out in a split plot based on randomized complete block design with three replicates in Research Filed of university of Zanjan as during 2015. Treatments consisted arrangement of three irrigation levels (starting irrigat...
متن کاملTranscriptome profiling of cytokinin and auxin regulation in tomato root
Tomato is a model and economically important crop plant with little information available about gene expression in roots. Currently, there have only been a few studies that examine hormonal responses in tomato roots and none at a genome-wide level. This study examined the transcriptome atlas of tomato root regions (root tip, lateral roots, and whole roots) and the transcriptional regulation of ...
متن کاملHormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway
Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. The symbiosis significantly affects the host physiology in terms of nutrition and stress resistance. Despite the lack of host range specificity of the interaction, functional diversity between AM fungal species exists. The interaction is finely regulated according to plant and fungal ...
متن کاملA circadian rhythm-regulated tomato gene is induced by Arachidonic acid and Phythophthora infestans infection.
A cDNA clone of unknown function, DEA1, was isolated from arachidonic acid-treated tomato (Solanum lycopersicum) leaves by differential display PCR. The gene, DEA1, is expressed in response to the programmed cell death-inducing arachidonic acid within 8 h following treatment of a tomato leaflet, 16 h prior to the development of visible cell death. DEA1 transcript levels were also affected by th...
متن کامل